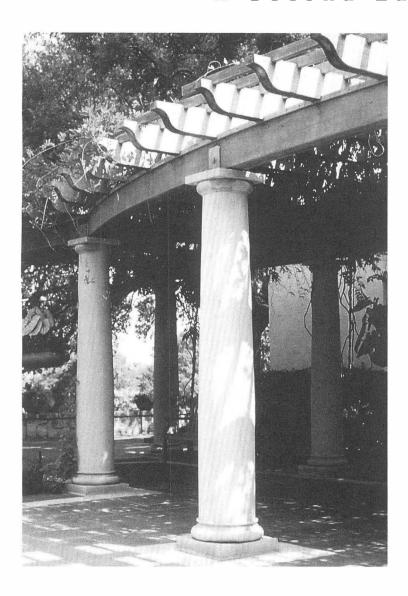

SECTION-2

LANDSCAPE ARCHITECTURE

second edition

CHARLES W. HARRIS
NICHOLAS T. DINES

EXTENDED LENGTH VEHICLES DIMENSIONS AND TURNING RADII


MAKE OF CAR	"A"	"B"	c	"D"	"E"	"F"	"G"
Cadillac	30'-0"	28'-6"	18'-11 1/2"	18'-9"	6'-11"	13'-0"	20'-10 1/4"
Dodge	23'-4"	21'-9"	13'-4 1/2"	12'-10 3/4"	6'-8"		18'-4"

TIME-SAVER STANDARDS

FOR LANDSCAPE ARCHITECTURE:

DESIGN AND CONSTRUCTION DATA

Second Edition

CO-EDITORS

Charles W. Harris Nicholas T. Dines

ASSISTANT EDITOR Kyle D. Brown

McGraw-Hill Publishing Company

New York • Washington, D.C. • Auckland • Bogatá • Caracas • Lisbon London • Madrid • Mexico City • Milan • Montreal • New Delhi • San Juan Singapore • Sydney • Tokyo • Toronto

DIVISION 400

Structures

Retaining Walls

CREDITS

Contributor:

Nicholas T. Dines, FASLA University of Massachusetts Amherst, Massachusetts

Domenico Annese, RLA, and Peter F. Martecchini, PE New York, New York

Information on metric calculations was provided by David Grahlman, P.E., Gamsby and Mannerow, Ltd., Guelph, Ontario


Technical Writer:

Kyle D. Brown

Reviewers:

Bradford G. Sears, RLA Fayetteville, New York

Stephen Hamway Sasaki Associates, Inc. Dallas, Texas

CONTENTS

- 1.0 Introduction
 - 1.1 Use of Retaining Structures
 - 1.2 Design Parameters
 - 1.3 Design Process
- 2.0 Selection Criteria for Retaining Structures
 - 2.1 Reinforced Embankments
 - 2.2 Unit and Stack Wall Systems
 - 2.3 Rigid Retaining Walls
- 3.0 Elements of Retaining Structures
 - 3.1 Subgrade
 - Properties of Soil
 - Soil Testing
 - 3.2 Foundations
 - 3.3 Drainage Devices
 - 3.4 Batter in Wall Faces
 - 3.5 Face Treatment

- 3.6 Expansion and Construction Joints
- 4.0 Types of Retaining Structures
 - 4.1 Reinforced Embankments
 - 4.2 Unit and Stack Wall Systems
 - Dry-Laid Stone Wall
 - Gabion Wall
 - Precast Unit Stack Wall
 - Earth Tieback Retaining Wall
 - Bin Wall
 - Crib Wall
 - Horizontal and Vertical Timber Wall Green Retaining Wall
 - 4.3 Rigid Retaining Walls
 Gravity Wall
 - Cantilevered Wall

- 5.0 Mechanics and Design Calculations
- 5.1 Lateral Loading
- 5.2 Resultant of Wall Weight and Earth Pressure
- 5.3 Wall Stability Tests
 - Overturning
 - Settlement at the Toe
 - Sliding Horizontally

6.0 Drainage

- 6.1 Surface Run-off
- 6.2 Backfill and Footing Drains
- 6.3 Weep Holes
- 7.0 Maintenance
- References

Small Dams

CREDITS

Section Editor:

Charles W. Harris

Technical Writers:

Kyle D. Brown

Krisan Osterby-Benson

Reviewers:

Alton P. Davis, Jr.

GEI Consultants, Inc.

Winchester, Massachusetts

Varoujian Hagopian

Sasaki Associates, Inc. Watertown, Massachusetts

Steve J. Poulos

GEI Consultants, Inc.

Winchester, Massachusetts

Illustrations:

Ginny Leonard

Ying Wang

Samuel Coplon

ey D. Blankenship

20 Small Dams

CONTENTS

- 1.0 Introduction
- 2.0 Purposes of Dams
- 3.0 Selection of Dam Site
 - 3.1 Investigation of Potential Sites
 - 3.2 Survey of Proposed Site

4.0 Types of Dams and Selection Criteria

4.1 Earthfill Embankment Dams

Types of Earthfill Embankment Dams Foundations for Earthfill Embankment

Dams

Top Width Dimensions

Settlement Allowance

Freeboard

Side Slopes

4.2 Diaphragm Rockfill Dams

Materials

Placement

Foundations

Profile

Granular Base for Membrane

Typical Membranes

4.3 Masonry Dams

Foundations

Nonoverflow Design

Overflow Design

Wing Walls

Aprons

4.4 Timber or Precast Concrete Cribbing

Dams

Beaver-Type Dams

Crib Dams

5.0 Stability Analysis of Gravity Dams

5.1 Forces Acting on Gravity Dams

5.2 Calculation of Stability

General Stability

Overturning

Crushing

Horizontal Sliding

6.0 Design of Major Components

6.1 Foundations

Types of Foundations

Bearing Strength of Foundations

Sliding

6.2 Drainage Problems

Masonry or Timber Dams Earthfill Embankment Dams

6.3 Filter Drains

Pervious Downstream Shells Horizontal Drainage Blankets

Toe Drains

Drainage Trenches

Filter Drain Requirements

6.4 Cutoffs

Cutoff Trenches

Cutoff Walls

6.5 Surface Drainage

6.6 Spillways and Fish Ladders

Masonry Spillways

Earth Spillways

Fish Ladders

6.7 Outlets

6.8 Dam Facing

Upstream Slope Protection
Downstream Slope Protection

Surfacing and Paving

CREDITS

Section Editor:

Nicholas T. Dines


Consultant:

Royston, Hanamoto, Alley, and Abey Mill Valley, California

Reviewers:

Robert Fager Sasaki Associates, Inc. Watertown, Massachusetts

Charles W. Harris, Emeritus Professor Harvard Graduate School of Design Cambridge, Massachusetts

CONTENTS

1.0 Introduction

1.1 General

1.2 Pavement Contexts

2.0 Basic Components

2.1 Subgrade

2.2 Aggregate Base and Subbase

2.3 Pavement

Flexible Pavements

Rigid Pavements

Porous Pavements

2.4 Pavement Edge

Aggregate Base Extension

Edge Thickening

Edge Restraint

Clay Soil Strategies

2.5 Pavement Joints

3.0 Pavement Design Criteria

3.1 Application

Load-Bearing Ability

Durability

Safety

Aesthetics

3.2 Climate

3.3 Subgrade

3.4 Cost and Maintenance Cost Maintenance 4.0 Materials Selection References

Fences, Screens, and Walls

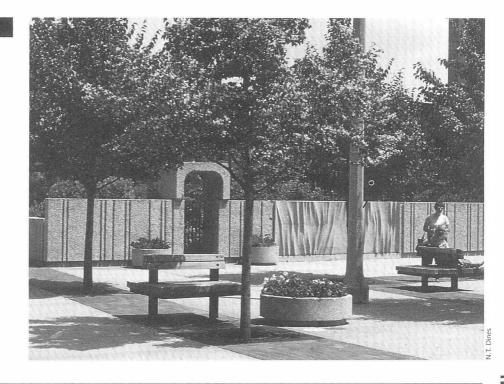
CREDITS

Section Editor:

Nicholas T. Dines

Contributors:

Don Hilderbrandt, Patrick Mullaly and Kathleen Bogaski LDR International, Inc.


Columbia, Maryland

Assistants:

David R. Holden Cynthia L. Riemer Charles H. Shaw, Jr. Nancy Takahashi Charles E. Bailey

Reviewers:

Kenneth DeMay Sasaki Associates, Inc. Watertown, Massachusetts

CONTENTS

1.0 Introduction

1.1 General

1.2 Design Process

1.3 Design Considerations

Purposes

Design Criteria

Site Context

Off-Site Impact

Design Expression

Legal and Code Requirements

Feasibility

2.0 Construction Methods and Details

2.1 Footings and Foundations

Footing Depth

Soil Conditions

Drainage

Posts and Footings

Wind Control

Uneven Terrain

2.2 Wooden Fences and Screens

Selecting Wood Materials

Structural Framework

Fencing Materials

Wood Preservatives and Finishes

Joining and Fastening

2.3 Metal Fences

Metal Picket Fences

Metal Fabric Fencing

2.4 Brick and Concrete Block Walls

Brickwork Patterns

Joints

Moisture Control

Brick Cap Units Reinforcement

2.5 Stone Walls

Stonework Patterns Mortar Mix

2.6 Poured Concrete Walls

2.7 Miscellaneous Barrier Materials

2.9 Connections to Buildings or Other Structures

2.10 Maintenance around the Base of Walls and Fences

2.11 Reproducing Historic Styles

Wood Decks and Boardwalks

CREDITS

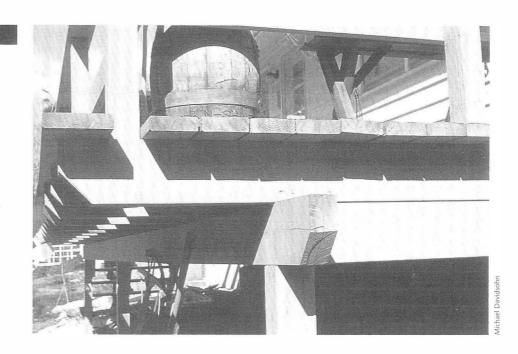
Contributor:

Gary M. Fishbeck

Technical Writer:

Jeffrey D. Blankenship

Graphics:


John Copley John Copley and Associates, Inc. Boston, Massachusetts

Reviewers:

J. Brooks Breeden
Department of Landscape Architecture
School of Architecture
Ohio State University
Columbus, Ohio

Olin Fralick Marvin & Associates, Inc. Walterboro, South Carolina

Thomas and Heather Ryan Sasaki Associates, Inc. Watertown, Massachusetts

CONTENTS

1.0 Introduction

- 1.1 General
- 1.2 Design Process
- 1.3 Preliminary Design Considerations

2.0 Principles of Construction

- 2.1 Framing Methods
 Platform Framing
 Plank-and-Beam Framing
- 2.2 Basic Components

Decking Joists

Joists Beams

Posts

Footings

Bracing and Blocking Stairs and Railings

2.3 Maintenance

3.0 Materials

- 3.1 Selection of Materials
- 3.2 Wood

Decay Resistance Lumber Grades

3.3 Hardware

Anchors, Hangers, and Plates

Nails

Wood Screws Bolts

- 3.4 Masonry
- 3.5 Other Materials
 Plant Materials

Metals

Plastics Fabrics

4.0 Sizing Wood Members

- 4.1 Using Span Tables
- 4.2 Sizing Example
- 4.3 Post Sizing
- 4.4 Beam Sizing
- 4.5 Joist Sizing
- 4.6 Decking Sizing

5.0 Construction Details

Glossary

Agencies and Organizations References 460 Wood Decks and Boardwalks

Pedestrian Bridges

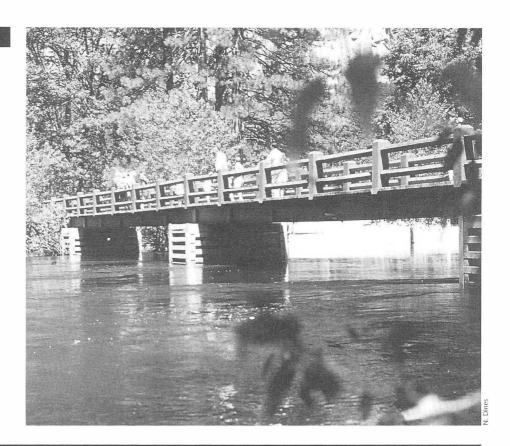
Technical Writers:

Jeffrey D. Blankenship Tess Canfield

Research Assistant: Gary Schiff

Selected Graphics:

Jeffrey Lakey


Reviewers:

Hans Willian Hagen, P.E. LeMessurier Associates, Inc. Cambridge, Massachusetts

Stephen E. Hamwey, P.E. Sasaki Associates, Inc. Watertown, Massachusetts

Anthony Hunt Anthony Hunt Associates London, England

Henry H. Liede Kane, Liede & Ratyna, P.C. Pleasantville, New York

CONTENTS

1.0 Introduction

2.0 Design Considerations

2.1 Defining the User

2.2 Spatial Standards

2.3 User Safety

General

Landings, Rest Areas, and

Handrailings

Decking and Surface Treatments

3.0 Bridge Construction

3.1 Site Selection and Survey Selection Criteria

Site Survey

3.2 Selection of Footbridge Type

Basic Components Selection Chart

Additional Considerations

3.3 Selection of Main Structural Members

3.4 Loadings on the Bridge's Superstructure

Types of Loading

Design Loading

User Loads for Narrow Footbridges

Pedestrian Loading

Horse and Rider Loading

Deflections

3.5 Substructures (Foundations)

Loading on Substructures

Foundations and Soil Bearing Capacity

Choice of Foundation (Footings or

Types of Abutments

Wing Walls

Simple Abutments for Footbridges

Excavation Shape and Shear Keys

Inclined Footing

Drainage

Bearing Shelves

Protective Coatings

Groundwater

Flood Damage and Scour

Bearings

4.0 Typical Designs for Short-Span

Footbridges

4.1 Log Footbridge

4.2 Sawn Timber Footbridge

4.3 Galloway Timber Footbridge

4.4 Galloway Steel Footbridge

4.5 Steel Beam Footbridge

4.6 Suspension Bridge

4.7 Concrete or Masonry Arch Footbridge

5.0 Typical Designs for Prefabricated Bridges 6.0 Problems of Erecting Bridges

7.0 Maintenance of Bridges

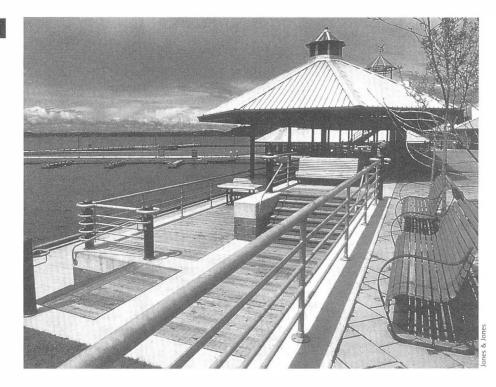
7.1 Maintenance in Design

7.2 Maintenance in Construction

7.3 Maintenance in Use

7.4 Inspection

Site Furniture and Features


CREDITS

Contributor:

Ilse Jones, G. H. Lee, and Kevin M. Carl Jones & Jones, Architects and Landscape Architects Seattle, Washington Portland, Oregon

Reviewers:

Nicholas T. Dines University of Massachusetts Amherst, Massachusetts

CONTENTS

1.0 Introduction

1.1 General

1.2 Design Objectives
Appropriateness
Response to Setting

2.0 Design Determinants

2.1 Cultural Factors
Social Context

Political Context

2.2 Physical Factors

Climate

Physiography

Built Environment

2.3 Environmental Factors

Temperature

Precipitation

Wind

Light

Noise

2.4 Operational Factors

Human Body Dimensions and

Movement

Regulatory Standards

3.0 Design Considerations

3.1 Selection Process

3.2 Design Elements

Recreational and Athletic Facilities

CREDITS

Contributors:

James D. Mertes, Ph.D. Department of Park, Recreation and Tourism Resources Michigan State University East Lansing, Michigan

Professor Gaylan Rasmussen, BLA, MLA Department of Park, Recreation and Tourism Resources Michigan State University East Lansing, Michigan

Kay Hutmacher, ASLA Fresno, California

Gene Schrickel, Terry Cheek, and Victor Baxter Schrickel, Rollins and Associates Arlington, Texas

Technical Writer:

Jeffrey D. Blankenship

Research Assistants:

Robert B. Ruth E. Brian Bristow

Reviewers:

Kevin A. Nelson, Ph. D. Candidate Department of Parks, Recreation and Tourism Michigan State University East Lansing, Michigan

Professor Emeritus Louis F. Twardzik Department of Parks, Recreation and Tourism Michigan State University East Lansing, Michigan

Albert J. Rutledge, Professor & Chairman Department of Landscape Architecture Iowa State University Ames, Iowa

Monty L. Christiansen, Associate Professor, Department of Recreation and Parks Pennsylvania State University University Park, Pennsylvania

ACKNOWLEDGMENTS

The authors would like to acknowledge the aid and insight provided by Mr. Ernie Ralston, landscape architect, Marshall, Maklin, Monaghan Limited, Edmonton, Alberta; and Mr. Garrett Gill, Department of Park Administration and Landscape Architecture, Texas Tech University, Lubbock, Texas; and David Gill Corporation (golf course architect), St. Charles, Illinois.

Pools and Fountains

CREDITS

Contributor:

Richard Chaix CMS Collaborative Carmel, California

Illustrations:

Rick Briggs President SCS Interactive Springfield, Illinois

Reviewers:

Angela Danadjieva Danadjieva and Koenig Associates Tiburon, California

Edward Janelli, Senior Landscape Architect Department of Public Works City of San Francisco, California

E. Byron McCulley Amphion Environmental, Inc. Oakland, California

Kevin Shanley The SWA Group

CONTENTS

1.0 History

2.0 Purpose of Water Displays

2.1 Aesthetic Factors Visual Psychological Auditory Sensory Effects

2.2 Functional Reasons
Recreation
Circulation Control

Utilitarian

3.0 Water

3.1 Quantification Capacity Flowrate Pressure

3.2 Water Quality
Supply
Chemical Treatment
Biological Balance

4.0 Water Effects

4.1 Classification and Description Still Water Moving Water

4.2 Characteristics of Various Effects

4.3 Applications

4.4 Design

Design Criteria for Various Effects Accommodations of Mechanical System

4.5 Maximization of Water Effect Transit Time Air Entrainment Readability

4.6 Optimization of Water Effect
Graphic and Model Studies
Observation of Precedent
Prototype Testing
Field Adjustment

5.0 Containers and Structures

5.1 Environment Scale

Setting

Topography Climate

Support Medium
Surrounding Materials

5.2 Construction Budget

5.3 Materials

Native Soil and Clay Concrete Stone

Stone

Wood, Metal, and Fiberglass

5.4 Cross-Sectional Configuration Relationship to Plaza Level Edge Conditions

Depth, Freeboard, and Clearance from Displays

CREDITS

Section Editor:

Nicholas T. Dines

Contributor:

Robert Prouse

HM Brandston and Partners Inc.

New York, New York

Michael Sardina

The SWA Group, Inc.

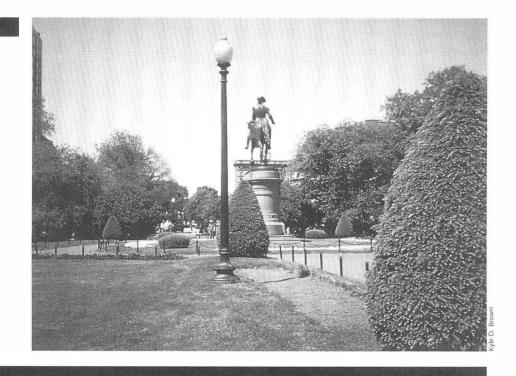
Boston, Massachusetts

Alan Fujimori Honolulu, Hawaii

Technical Writer:

Kyle D. Brown

Reviewers:


Peter Coxe

William Lam Associates

Cambridge, Massachusetts

Kenneth E. Bassett

Sasaki Associates, Inc.

CONTENTS

1.0 Introduction

1.1 General

1.2 Objectives of Outdoor Lighting

2.0 Terminology

3.0 General Design Principles

3.1 Orientation

Lighting Hierarchy Clear Lighting Patterns

3.2 Identification

Intersection Articulation Placement of Luminaires Deciding What to Light

3.3 Safety

Glare

Underlighting

3.4 Security

Walkway Lights

Surveillance

Vandalism

3.5 Atmosphere and Character

Background

Foreground

Illumination of Objects (Shape

Accentuation)

Color Perception

4.0 Lamp Characteristics and Light Distribution

4.1 Lamp Characteristics

Incandescent Lamps

Fluorescent Lamps

Mercury Vapor Lamps (Deluxe White)

Induction Lamps

Metal Halide Lamps

High-Pressure Sodium Lamps

'White' High-Pressure Sodium Lamps

Low-Pressure Sodium Lamps

4.2 Light Distribution

Horizontal and Vertical Distribution

Basic Light Distribution Patterns Uniformity

Cutoff

4.3 Categories of Light Fixtures Low-Level Landscape Lights Intermediate-Height Landscape Lights

Parking Lot and Roadway Lights High-Mast Lights

4.4 Landscape Lighting Effects
Uplighting

Moonlighting Silhouette Lighting

Spotlighting Spreadlighting

Pathlighting

5.0 Low Voltage Systems

6.0 Recommended Levels of Illumination

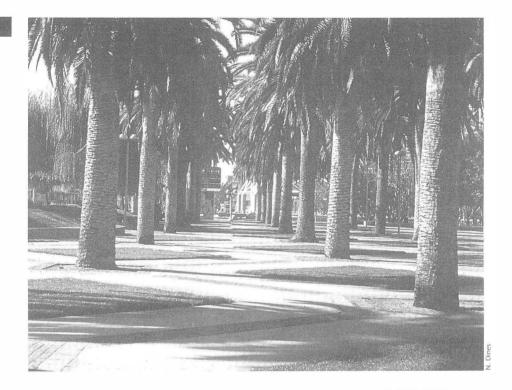
Plants and Planting

CREDITS

Section Editor:

Nicholas T. Dines

Technical Writers:


David Kvinge Sarah Gronquist Jeffrey D. Blankenship

Reviewers:

Dr. David Bloniarz Urban Forester Department of Forestry and Wildlife Management University of Massachusetts Amherst, MA

Dr. Dennis Ryan Department of Forestry and Wildlife Management University of Massachusetts Amherst, MA

The original first edition illustrations for this section were supplied by Michael Van Valkenburgh Associates, Cambridge, Massachusetts.

CONTENTS

1.0 Introduction and Purpose

2.0 Design Criteria

2.1 Major Functions of Plant Materials Aesthetics Environmental Modification Screening Circulation Control Production Bioengineering and Other Forms of

2.2 Cost Specimen Plantings Plantings vs. Hardscape Costs

Structural Mitigation

2.3 Hardiness

2.4 Safety Considerations Poisonous Plants Litter-producing Plants Weak-branched Plants Plants with Drooping Branches Plants with Shallow Roots Thorned Plants Plants that Attract Insects

2.5 Maintenance Considerations

Proximity to Mechanical Activity Placement of Plantings Diversity of Plant Communities Disease and Insect Resistance Proximity of Plants Long-Term Maintenance Costs

3.0 Assessing Existing Vegetation

3.1 Protecting Existing Plant Materials **During Construction** Long-Term Protection

3.2 Invasive Species

4.0 Planting Plans, Details, and Specifications

4.1 Proper Techniques for Planting Condition of Plants Upon Installation Planting Holes Mulches and Fertilization Backfills Trunk Wrapping and Sunburn Staking and Guying Pruning at Planting Time

4.2 General Notes on Planting Plans

4.3 Notes and Details

Notes Planting Details

4.4 Contract Specifications

4.5 Standards for Nursery Stock

5.0 Managment Strategies

6.0 Specialized Planting Strategies

6.1 Using Native Plants

6.2 Xeriscaping and Water-Efficient Landscapes Planning and Design Soil Analysis and Improvements Practical Turf Areas Characteristics of Appropriate Drought-Tolerant Plants Efficient Irrigation Mulching Appropriate Maintenance

6.3 Urban Forestry

6.4 Planting on Disturbed Sites

6.5 Planting for Bioengineering

CREDITS

Contributor

Theodore Osmundson & Associates Theodore Osmundson, writer Gordon Osmundson, editor San Francisco, California

Graphics:

Theodore Osmundson, FASLA April Potter

Technical Writer:

Kyle D. Brown

Research Advisor:

Ralph E. Wilcoxen Berkeley, California

Reviewers:

Thomas Wirth, ASLA Sherborn, Massachusetts

William L. Clarke

San Francisco, California

Fred H. Peterson Soil & Plant Lab, Inc. Santa Clara, California

CONTENTS

- 1.0 Introduction
- 2.0 Protection of the Roof and Structure
 - 2.1 Load Bearing Capacity
 - 2.2 Waterproofing
- 3.0 Special Provisions
 - 3.1 Drainage
 - 3.2 Lightweight Planting Medium Fine Sand

Soil Amendments

Depths and Weights of Planting

Medium and Plants

Ways to Reduce Weight

3.3 Adaptation to Climate

Climate

Wind

Sun and Shade

3.4 Irrigation

4.0 Selection of Materials and Methods of Anchoring

- 4.1 Structural Materials
- 4.2 Paving
- 4.3 Methods of Anchoring
- 5.0 Pools and Fountains
 - 5.1 General Considerations

- 5.2 Waterproofing and Anchoring Pool Walls
- 6.0 Provision for Utilities
 - 6.1 Electrical
 - 6.2 Water
- 7.0 Safety and Security
- 8.0 Maintenance
 - 8.1 Paving, Fixtures, and Furnishings 8.2 Plant Maintenance
- References

Interior Landscapes

Jay Graham Graham Landscape Architecture Annapolis, Maryland

Nelson Hammer, ASLA Hammer Design Boston, Massachusetts

Gerard Leider Rentokil Environmental Services Riverwoods, Illinois

Technical Writer:

Kyle D. Brown

Reviewers:

Rentokil Environmental Services Burtonsville, Maryland

CONTENTS

- 1.0 Introduction
- 2.0 Physical Requirements of Plants
 - 2.1 Light

Intensity

Duration

Quality

2.2 Temperature, Humidity, and Air

Quality

Temperature

Relative Humidity

Air Quality

- 2.3 Water
- 2.4 Planting Medium
- 2.5 Space/Volume
- 2.6 Weight of Plants
- 2.7 Acclimatization
- 2.8 Maintenance

3.0 Techniques to Meet Physical Requirements

3.1 Light

Daylight

Windows + Clerestories

Skylights

Glazing Materials

Electric Light

- 3.2 Air
- 3.3 Water

Hand Watering

Automatic Systems

- 3.4 Planting Medium
- 3.5 Construction Details
- 4.0 Design Process
- 5.0 Plant Palette
 - 5.1 Design Objectives

5.2 Character of Interior Plants

Growth Habit

Texture Color

- 5.3 Design Suggestions
- 5.4 Commonly Used Plants

Size Categories

Plant List

Environmental Conditions

Disturbed Landscapes

CREDITS

Contributors:

William Agnew REVEG Environmental Consulting, Inc. Fort Collins, Colorado

Herbert R. Schaal EDAW, Inc. Fort Collins, Colorado

Marc Theisen Synthetic Industries Chattanooga, Tennessee

Reviewers:

Dr. David Johnson Western Ecological Resources Boulder, Colorado

Dr. Edward F. Redente Shepard Miller, Inc. Fort Collins, Colorado

CONTENTS

1.0 Introduction

1.1 Problem of Erosion

2.0 Reclamation Process

2.1 Establishing Objectives Meeting Government Standards Economic and Social Objectives **Environmental Objectives** Evaluation of Objectives

2.2 Factors Influencing Methods of Reclamation

> Soil Characteristics Vegetation

Other Considerations

2.3 Selecting Appropriate Reclamation Methods, Materials, and Developing

3.0 Protection of Soil, Water Quality, and Adjacent Undisturbed Areas

3.1 Use of Sediment and Erosion Control Sediment Control Techniques Sediment Basins

Strawbale Dikes

Silt Fences

Gravel Bag Structures

Continuous Berms

Rock Check Dams

3.2 Erosion Control Technologies

3.3 Temporary Degradable Materials

Mulches

Tackifiers

Biaxially Oriented Process Nets

Bonded Fiber Matrix Systems

Fiber Roving Systems

Erosion Control Blankets/Mats

3.4 Turf Reinforced Mats

3.5 Hard Armor Systems

Geocellular Containment Systems Fabric Formed Revetments Concrete Block Systems Gabions

Rip-rap

4.0 Landshaping and Stratigraphy Landshaping

Stratigraphy 5.0 Surface Conditioning

Topsoil

Stabilizing Topsoil

Improving Water Retention Capacity

Modifying Acidic Soils

Modifying Saline Soils

Applying Fertilizers

Seedbed Preparation

Mulches

6.0 Planting

Temporary Erosion Control Plantings Permanent Plantings Selecting Plant Material Acquiring Plant Material Native Regrowth Nursery Stock Seeding Methods Planting Schedules

7.0 Establishment and Maintenance of Vegetation

Sound Control

CREDITS

Contributors:

Walter Kehm

E. D. A. Collaborative, Inc.

Toronto, Ontario

Canada

Phillip Ellis

Wimpey Laboratories, Ltd.

Hayes, Middlesex

England

Reviewers:

J. R. Wear

Ministry of Transportation and

Communications

Province of Ontario

Downsview, Ontario

Canada

Robert Armstrong

Federal Highway Administration

Washington, D.C.

Robert Newman

Christopher Menge

Bolt Beranek and Newman Inc.

Cambridge, Massachusetts

CONTENTS

1.0 Introduction

- 1.1 Basic Approaches to Sound Control Acoustical Planning (Preplanning) Retrofitting
- 1.2 Acoustic Variables
 Source of the Sound
 Path and Distance of Sound
 Transmission
- Receiver of the Sound

2.0 Physics of Sound

- 2.1 Nature of Sound Waves
- 2.2 Sound Pressures and Decibels

3.0 Noise

- 3.1 Definition and Sources of Noise
- 3.2 Psychological Response to Noise
- 3.3 Units of Noise Measurement

 Leq (Equivalent Noise Level)

 Ldn (Day-Night Equivalent Noise

 Level)
- 4.0 Noise Estimations and Calculations
 - 4.1 Traffic Noise
 - 4.2 Train Noise

- 4.3 Aircraft Noise
- 4.4 Industrial Noise

5.0 Noise Control Standards

- 5.1 Acceptable Sound Levels in Residential and Recreational Environments
- 5.2 Noise Rating
- 5.3 Sound Level Zoning and Land Use Planning

6.0 Control of Noise-Outdoors

- 6.1 Source of the Sound
- 6.2 Path and Distance of the Sound Transmission

Effect of Distance from a Point Source Effect of Distance from a Line Source Other Effects (Point and Line Sources)

6.3 Sound Barriers

Distance (Placement of Barrier) Height of Barrier

Continuity of Barrier Length of Barrier

Physical Mass of a Barrier (Material)

6.4 Earth Berms

- 6.5 Barrier Walls and Earth Berms
- 6.6 Vegetation
- 6.7 Building Layout and Site Selection

7.0 Design Principles

- 7.1 Design Criteria
- 7.2 Aesthetic Issues
 Planes

Mass

Texture

8.0 Design Application (Case Studies)

- 8.1 Recreational Development (Example Problem)
- 8.2 Residential Development (Example Problem)
- 8.3 Industrial Development: Open-Pit Mine (Example Problem)
- 8.4 Industrial Development: Steel Plant (Example Problem)

9.0 Maintenance Considerations

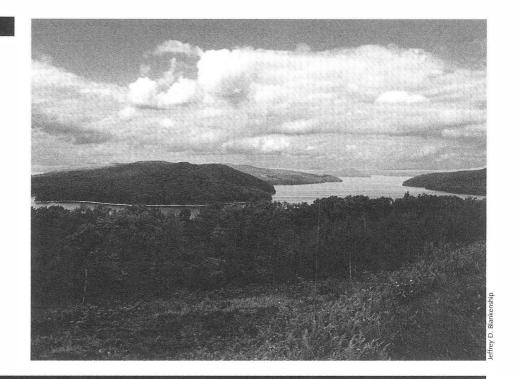
- 9.1 Earth Berms
- 9.2 Barrier Walls

Water Supply

CREDITS

Contributor:

Daniel Bubly, P.E., L.A., A.I.C.P. Bubly Associates, Inc. Sharon, Massachusetts


Graphics:

Joseph C. Cloud

Mark B. Darnold, P.E., The Berkshire Design Group, Inc. Northampton, Massachusetts

Reviewer:

Robert T. Ferrari, P.E. Ferrari-Atwood Engineering, Inc. Providence, Rhode Island

CONTENTS

- 1.0 Introduction
- 2.0 Standards and Criteria
 - 2.1 Water Quality
 - 2.2 Water Quantity
 - 2.3 Fire Fighting Requirements
 - 2.4 Non-agricultural Irrigation
- 3.0 Sources of Water
 - 3.1 General
 - 3.2 Low-Yield Systems Wells Cisterns
 - Surface Catchments 3.3 High-Yield Wells
 - 3.4 Surface Water Supplies

- 4.0 Constraints on Well Development
 - 4.1 Proximity to Seawater
 - 4.2 Proximity to Organic Deposits
 - 4.3 Land Use Density and Waste Disposal Relationship between Sewage Leaching Systems and the Water Table Density of Development
 - 4.4 Industrial and Waste Contamination
- 5.0 Groundwater Flow Analysis
- 6.0 Well Recharge Area Analysis
- 7.0 Reservoir Design Considerations
 - 7.1 Size of Watershed
 - 7.2 Size of Reservoir
 - 7.3 Shape and Depth of Reservoir

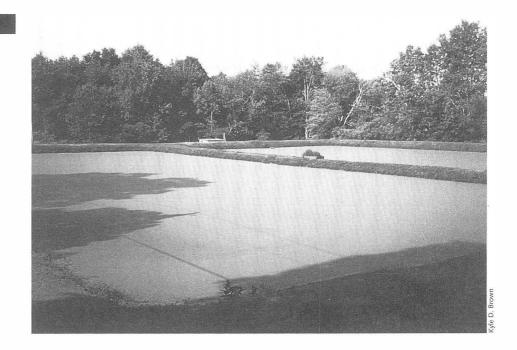
- 7.4 Watershed Characteristics
- 7.5 Dam Location
- 7.6 Water Treatment
- 7.7 Site Preparation
- 7.8 Consultants

Sewage Disposal

CREDITS

Contributor:

Mark B. Darnold, P.E., The Berkshire Design Group, Inc. Northampton, Massachusetts


Daniel Bubly, P.E., L.A., A.I.C.P. Bubly Associates, Inc. Sharon, Massachusetts

Graphics:

Gary M. Fishbeck

Reviewer:

Robert F. Ferrari, P.E. Ferrari-Atwood Engineering, Inc. Providence, Rhode Island

CONTENTS

- 1.0 Introduction
 - 1.1 Types of Sewage Systems 1.2 On-Site Disposal
- 2.0 Description of Sewage System Processes
- 3.0 System Alternatives
 - 3.1 System Components Small Individual Systems Large Cluster Systems
 - 3.2 System Configuration
 Costs
 Density of Development
 Site Suitability
 - 3.3 Additional Factors
 Filtration through Soil
 Removal of Nitrates
 Soil Modification
 - 3.4 Solids Removal/Digestion Systems
 Septic Systems

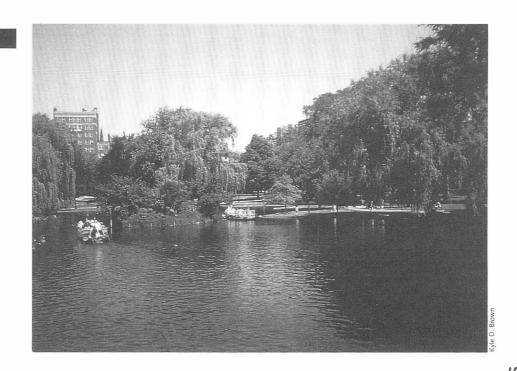
- Aerobic Systems
- 3.5 Other Sewage Disposal Alternatives
 Composting Toilets
 Recirculating Systems
 Holding Tanks
- 3.6 Cesspools
- 4.0 Design of Septic Tanks and Leaching Systems
 - 4.1 Applications
 - 4.2 Theory
 - Primary Functions Maintenance
 - 4.3 Sizing and Details: Septic Tanks
 Sizing
 - Design Details
 - 4.4 Sizing and Details: Leaching Facilities Sizing Design Details

- 4.5 Grease Traps
- 4.6 Dosing Chambers
- 4.7 Relationship of On-Site Systems to Trees and Paving
 - Trees
 - aving
- 5.0 Aerobic Systems with Surface Infiltration
 - 5.1 Application
 - 5.2 Lagoons
 - 5.3 Package Plants
 - 5.4 Subsurface Leaching
- 6.0 Aerobic Systems with Evapotranspiration Systems
- 7.0 Aerobic Systems with Surface Water Discharge
- References

CREDITS

Contributor:

Daniel Bubly, P.E., L.A., A.I.C.P. Bubly Associates, Inc. Sharon, Massachusetts


Graphics:

Gary M. Fishbeck

Reviewers:

Mark B. Darnold, P.E., The Berkshire Design Group, Inc. Northampton, Massachusetts

Robert F. Ferrari, P.E. Ferrari-Atwood Engineering, Inc. Providence, Rhode Island

CONTENTS

- 1.0 Introduction
- 2.0 Evaluative Criteria for Recreational Water Bodies
 - 2.1 Water Quality
 - 2.2 Water Levels
 - 2.3 Side Slopes

3.0 Swimming Waters

- 3.1 General
- 3.2 Swimming Pools
- 3.3 Ponds and Lakes
- 3.4 Stream Impoundments

Site Selection

Water Supply

Water Quality

Reservoir Form

Watershed Considerations

Construction of Small Dams

3.5 Excavated Ponds

General

Water Supply and Quality

Irrigation

CREDITS

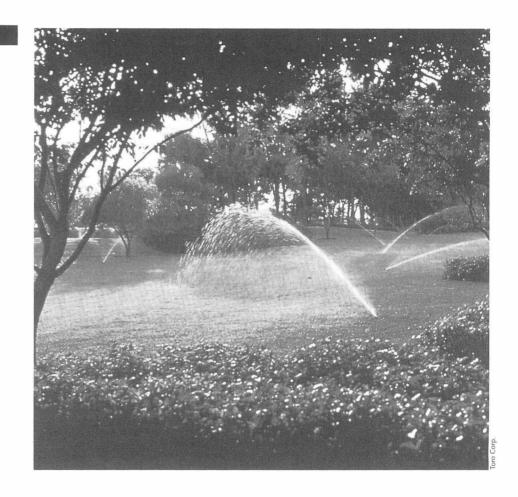
Contributors:

Jim Wright, Category Manager, Rotors The Toro Company Riverside, California

Erich O. Wittig
The Toro Company
Riverside, California

Advisors/Reviewers:

Ken Killian Killian Design Group, Inc. Howard, Illinois


Jeffrey D. Brauer Golfscapes, Inc. Dallas, Texas

Richard Lakutis The Architects Collaborative, Inc. Cambridge, Massachusetts

Stephen W. Smith EDAW, Inc. Fort Collins, Colorado

John Hooper Hooper Engineering, Ltd. Palintine, Illinois

Michael Holland Sasaki Associates, Inc. Watertown, Massachusetts

CONTENTS

1.0 Introduction

- 1.1 General
- 1.2 Important Considerations
 Plant Growth Requirements
 Conservation of Water

2.0 Water Sources

- 2.1 Municipal Water
- 2.2 Lakes, Ponds, Reservoirs, Streams, and Rivers
- 2.3 Wells

- 2.4 Effluent Water
 - Acquisition
 - Analysis
 - Permits and Regulations
 - Public Attention
 - Assessing Water Requirements

3.0 Design Criteria

- 3.1 Climatic Conditions
 Rainfall
 - Wind

- 3.2 Soil Characteristics
- 3.3 Plant Materials
- 3.4 Available Watering Time
- 3.5 Property Size and Shape
- 3.6 Location of Buildings, Trees, and Other Fixed Objects
- 3.7 Elevation Changes
- 3.8 Economic Considerations

4.0 Types of Irrigation

4.1 Sprinkler Irrigation Systems

The site design and construction reference of the design professions

ewly designed and containing 40 percent completely new content, *Time-Saver Standards for Landscape Architecture*, Second Edition, continues to be the most complete source of site construction standards and data for the design and planning professions and related academic disciplines. It maintains and enhances its emphasis on promoting environmentally suitable techniques, processes, and materials aimed at mitigating the impact of construction intervention.

This essential and comprehensive Second Edition not only covers the major changes that have occurred in the last decade, it also serves as a framework for future trends. It is fully metric, to meet Federal and International requirements, with expanded coverage of handicapped access and human dimensional standards. *Time-Saver Standards for Landscape Architecture*, Second Edition, features increased coverage of:

- SITE STORM WATER "BEST MANAGEMENT" PRACTICES
- NEW URBAN TREE PLANTING AND XERISCAPE CONCEPTS
- EARTH RETAINING STRUCTURES AND PAVEMENT DESIGN
- LAND RECLAMATION, INCLUDING SOIL AND VEGETATION RESTORATION
- METRIC SITE LAYOUT PRACTICES, INCLUDING RECREATION FACILITIES
- **ENERGY AND RESOURCE CONSERVATION**
- NATURAL PROCESSES AND SITE CONSTRUCTION PROCEDURES
- New expanded construction details
- SIMPLIFIED CONSTRUCTION MATERIALS DATA

In the time honored tradition of Time-Saver Standards, this Second Edition combines the expertise of over 200 design professionals to create a working resource for all who plan, design, manage, and build human landscapes. Over 50 sections provide concise tables, checklists, "Key Point" text summaries, and illustrations to provide an invaluable information resource for offices and classrooms throughout the world.

Cover Design: Margaret Webster-Shapiro. Cover Photo: SuperStock, Inc.

Visit us on the World Wide Web at www.books.mcgraw-hill.com

McGraw-Hill